Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present a novel algorithm that fuses the existing convex-programming based approach with heuristic information to find optimality guarantees and near-optimal paths for the Shortest Path Problem in the Graph of Convex Sets (SPP-GCS). Our method, inspired by A* initiates a best-first-like procedure from a designated subset of vertices and iteratively expands it until further growth is neither possible nor beneficial. Traditionally, obtaining solutions with bounds for an optimization problem involves solving a relaxation, modifying the relaxed solution to a feasible one, and then comparing the two solutions to establish bounds. However, for SPP-GCS, we demonstrate that reversing this process can be more advantageous, especially with Euclidean travel costs. In other words, we initially employ A* to find a feasible solution for SPP-GCS, then solve a convex relaxation restricted to the vertices explored by A* to obtain a relaxed solution, and finally, compare the solutions to derive bounds. We present numerical results to highlight the advantages of our algorithm over the existing approach in terms of the sizes of the convex programs solved and computation time.more » « lessFree, publicly-accessible full text available September 16, 2026
-
Free, publicly-accessible full text available August 17, 2026
-
Free, publicly-accessible full text available August 17, 2026
-
Conventional Multi-Agent Path Finding (MAPF) problems aim to compute an ensemble of collision-free paths for multiple agents from their respective starting locations to pre-allocated destinations. This work considers a generalized version of MAPF called Multi-Agent Combinatorial Path Finding (MCPF) where agents must collectively visit a large number of intermediate target locations along their paths before arriving at destinations. This problem involves not only planning collision-free paths for multiple agents but also assigning targets and specifying the visiting order for each agent (i.e., target sequencing). To solve the problem, we leverage Conflict-Based Search (CBS) for MAPF and propose a novel approach called Conflict-Based Steiner Search (CBSS). CBSS interleaves (1) the collision resolution strategy in CBS to bypass the curse of dimensionality in MAPF and (2) multiple traveling salesman algorithms to handle the combinatorics in target sequencing, to compute optimal or bounded sub-optimal paths for agents while visiting all the targets. We also develop two variants of CBSS that trade off runtime against solution optimality. Our test results verify the advantage of CBSS over the baselines in terms of computing cheaper paths and improving success rates within a runtime limit for up to 20 agents and 50 targets. Finally, we run both Gazebo simulation and physical robot tests to validate that the planned paths are executablemore » « less
-
Multi-Agent Path Finding (MA-PF) computes a set of collision-free paths for multiple agents from their respective starting locations to destinations. This paper considers a generalization of MA-PF called Multi-Agent Teamwise Cooperative Path Finding (MA-TC-PF), where agents are grouped as multiple teams and each team has its own objective to be minimized. For example, an objective can be the sum or max of individual arrival times of the agents. In general, there is more than one team, and MA-TC-PF is thus a multi-objective planning problem with the goal of finding the entire Paretooptimal front that represents all possible trade-offs among the objectives of the teams. To solve MA-TC-PF, we propose two algorithms TC-CBS and TC-M*, which leverage the existing CBS and M* for conventional MA-PF. We discuss the conditions under which the proposed algorithms are complete and are guaranteed to find the Pareto-optimal front. We present numerical results for several types of MA-TC-PF problems.more » « less
-
Conventional Multi-Agent Path Finding (MAPF) problems aim to compute an ensemble of collision-free paths for multiple agents from their respective starting locations to pre-allocated destinations. This work considers a generalized version of MAPF called Multi-Agent Combinatorial Path Finding (MCPF) where agents must collectively visit a large number of intermediate target locations along their paths before arriving at destinations. This problem involves not only planning collision-free paths for multiple agents but also assigning targets and specifying the visiting order for each agent (i.e., target sequencing). To solve the problem, we leverage Conflict-Based Search (CBS) for MAPF and propose a novel approach called Conflict-Based Steiner Search (CBSS). CBSS interleaves (1) the collision resolution strategy in CBS to bypass the curse of dimensionality in MAPF and (2) multiple traveling salesman algorithms to handle the combinatorics in target sequencing, to compute optimal or bounded sub-optimal paths for agents while visiting all the targets. We also develop two variants of CBSS that trade off runtime against solution optimality. Our test results verify the advantage of CBSS over the baselines in terms of computing cheaper paths and improving success rates within a runtime limit for up to 20 agents and 50 targets. Finally, we run both Gazebo simulation and physical robot tests to validate that the planned paths are executable.more » « less
-
N/A (Ed.)Abstract—The Resource Constrained Shortest Path Problem (RCSPP) seeks to determine a minimum-cost path between a start and a goal location while ensuring that one or multiple types of resource consumed along the path do not exceed their limits. This problem is often solved on a graph where a path is incrementally built from the start towards the goal during the search. RCSPP is computationally challenging as comparing these partial solution paths is based on multiple criteria (i.e., the accumulated cost and resource along the path), and in general, there does not exist a single path that optimizes all criteria simultaneously. Consequently, the search needs to maintain and explore a large number of partial paths in order to find an optimal solution. While a variety of algorithms have been developed to solve RCSPP, they either have little consideration about efficiently comparing and maintaining the partial paths, which reduces their overall runtime efficiency, or are restricted to handle only one resource constraint as opposed to multiple resource constraints. This paper develops Enhanced Resource Constrained A* (ERCA*), a fast A*-based algorithm that can find an optimal solution while satisfying multiple resource constraints. ERCA* leverages both the recent advances in multi-objective path planning to efficiently compare and maintain partial paths, and techniques from the existing RCSPP literature. Furthermore, ERCA* has a functional parameter to broker a trade-off between solution quality and runtime efficiency. The results show ERCA* often runs several orders of magnitude faster than an existing leading algorithm for RCSPP.more » « less
An official website of the United States government

Full Text Available